

2019 Research & Development Day REIMAGINING THERAPEUTIC ANTIBODIES

FEBRUARY 2019

Forward Looking Statement

This presentation may contain projections and other forward-looking statements regarding future events. All statements other than statements of historical facts contained in this presentation, including statements regarding our future financial condition, technology platform, development strategy, prospective products, preclinical and clinical pipeline and milestones, regulatory objectives, expected payments from and outcomes of collaborations, and likelihood of success, are forward-looking statements. Such statements are predictions only and involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. These risks and uncertainties include, among others, the costs, timing and results of preclinical studies and clinical trials and other development activities; the uncertainties inherent in the initiation and enrollment of clinical trials; expectations of expanding on-going clinical trials; availability and timing of data from clinical trials; the unpredictability of the duration and results of regulatory review; market acceptance for approved products and innovative therapeutic treatments; competition; the potential not to receive partnership milestone, profit sharing or royalty payments; the possible impairment of, inability to obtain and costs of obtaining intellectual property rights; and possible safety or efficacy concerns, general business, financial and accounting risks and litigation. Because forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified and some of which are beyond our control, you should not rely on these forward-looking statements as predictions of future events. More information concerning us and such risks and uncertainties is available on our website and in our press releases and in our public filings with the U.S. Securities and Exchange Commission. We are providing this information as of its date and do not undertake any obligation to update or revise it, whether as a result of new information, future events or circumstances or otherwise. Additional information may be available in press releases or other public announcements and public filings made after the date of this presentation.

This presentation concerns products that have not yet been approved for marketing by the U.S. Food and Drug Administration (FDA). No representation is made as to their safety or effectiveness for the purposes for which they are being investigated.

Sean McCarthy, D.Phil.

President, Chief Executive Officer and Chairman

Today's Agenda and Speakers

CYTOMX THERAPEUTICS 2019 RESEARCH & DEVELOPMENT DAY

Welcome and Strategic Overview Sean McCarthy, D. Phil.

The Probody Platform Michael Kavanaugh, M.D.

CX-072 (PD-L1) PROBODY PROGRAM

Program Overview Rachel Humphrey, M.D.

CX-2009 (CD166) PROBODY DRUG CONJUGATE PROGRAM

Program Overview Rachel Humphrey, M.D.

Michael Kavanaugh, M.D.

TRANSLATION AND INNOVATION

CX-072 and CX-2009 Clinical Translational Overview Michael Kavanaugh, M.D.

The Next Wave of Innovation Michael Kavanaugh, M.D.

Question and Answer

Break

FUTURE PERSPECTIVES

Probody™ Therapeutics:

Perspectives from a PROCLAIM Clinical Investigator

Alex Spira, M.D., Ph.D., FACP

CytomX in 2019 and Beyond

Sean McCarthy, D. Phil.

Question and Answer

Closing Remarks Sean McCarthy, D. Phil.

CYTOMX THERAPEUTICS LEADERSHIP

SEAN MCCARTHY, D.Phil.
President, Chief Executive Officer
and Chairman

MICHAEL KAVANAUGH, M.D. Chief Scientific Officer and Head of Research and Non-Clinical Development

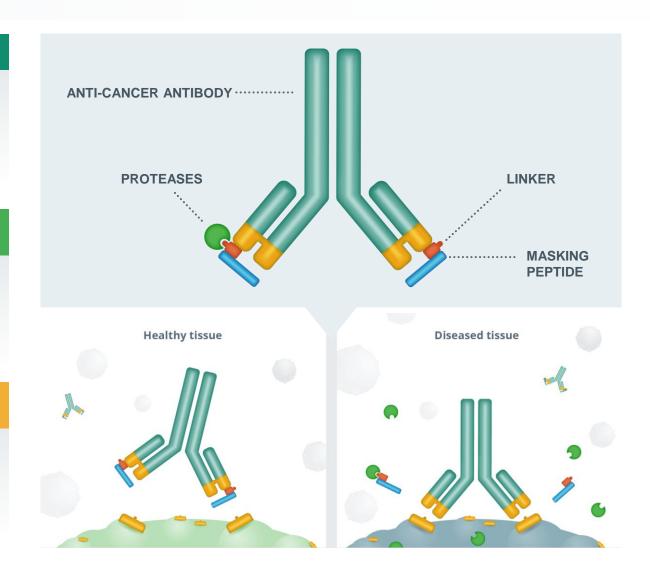
RACHEL HUMPHREY, M.D.
Chief Medical Officer

TODAY'S GUEST SPEAKER

ALEX SPIRA, M.D., PH.D., FACP
Director, Virginia Cancer Specialists Research
Institute, Assistant Professor, Johns Hopkins
School of Medicine and Medical Director,
US Oncology Lung Program

Reimagining Therapeutic Antibodies

ANTIBODIES ARE A SUCCESSFUL CLASS OF THERAPEUTICS


- Powerful, potent modalities; > \$100 billion WW sales 2018
- Potency can be a liability for widely distributed targets
- Major opportunity to improve targeting and localize antibody pharmacology

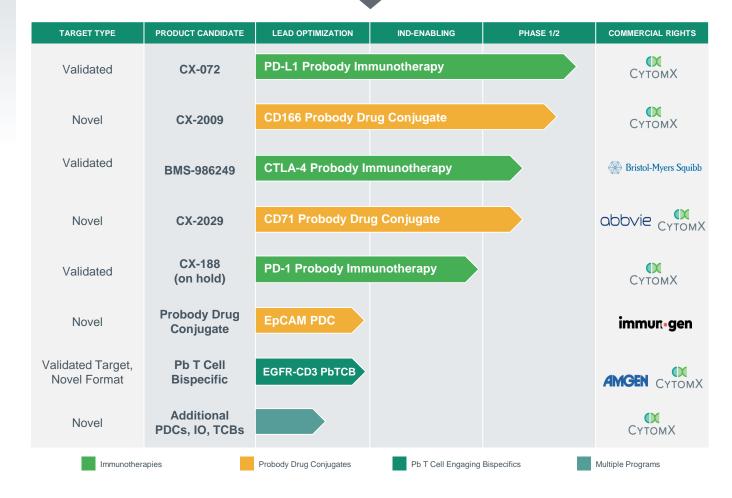
CYTOMX PROBODY™ PLATFORM IS DESIGNED TO LOCALIZE TARGET BINDING TO TUMOR

- Maintaining potency
- Reducing side effects
- Enabling new target opportunities

PROBODY PLATFORM BUILT ON A DECADE OF "HIGH SCIENCE" RESEARCH AT CYTOMX

- Deep knowledge of tumor microenvironment biology
- Innovative antibody engineering and IP to create Probody therapeutics, a unique class of localized, antibody prodrugs

Our Vision and Mission



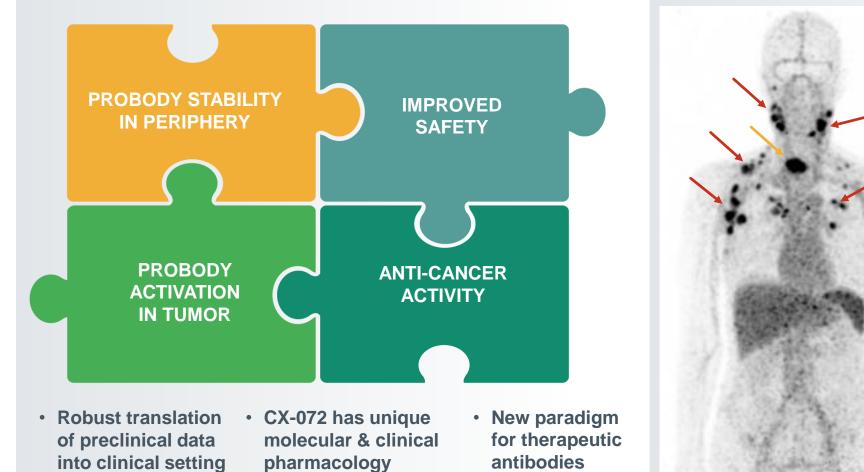
Our Corporate Strategy

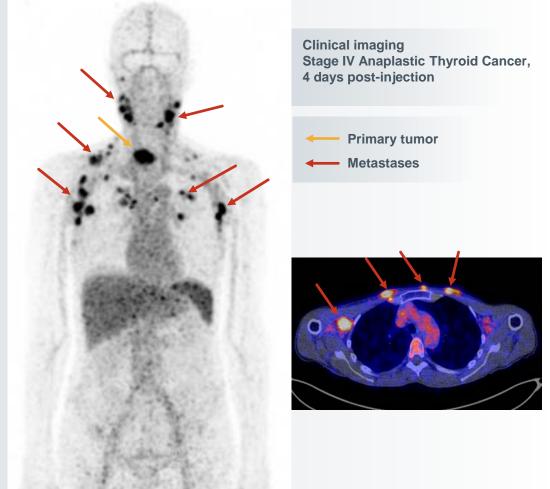
INTEGRATED SET OF ACTIONS TO EXPLOIT BROAD POTENTIAL OF THE PROBODY PLATFORM

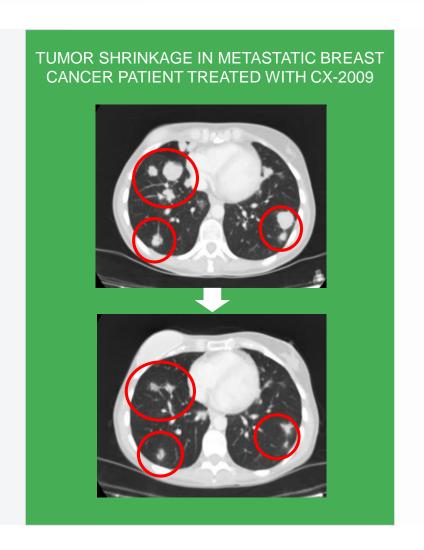
- Discover and develop differentiated, best-in-class antibodybased immunotherapies against validated targets with meaningful therapeutic window enhancements
- Discover and develop first-in-class therapies against novel, undruggable targets with potential across multiple cancer types
- Develop safer, more effective combination therapies to drive longer term, more durable patient responses
- Leverage platform versatility to enable new potent therapeutic antibody formats, e.g. Probody T Cell Bispecifics
- Establish corporate alliances for non-dilutive capital, additional resources and expertise
- Access technologies/programs to complement our platform and our pipeline

ADVANCEMENT OF DEEP AND DIFFERENTIATED ONCOLOGY PIPELINE

Consistent Execution and Robust Corporate Trajectory


2018: A Transformational Year of Firsts for CytomX


- First-in-Human Probody Clinical Data
- First Clinical Translational Data
- First Partnered Programs Entering the Clinic
- First Follow-On Financing Since 2015 IPO

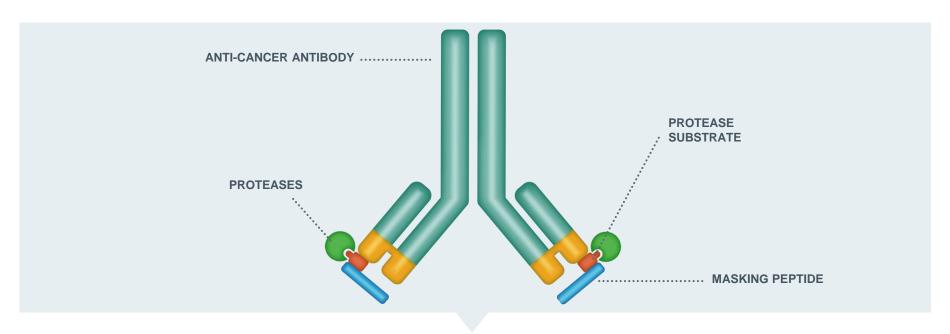

Integrated Clinical and Translational Data Support First Platform Proof-of-Concept

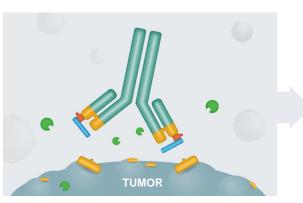
CX-2009 is an Investigational First-in-Class Anti-CD166 Targeted Therapy with Broad Market Potential

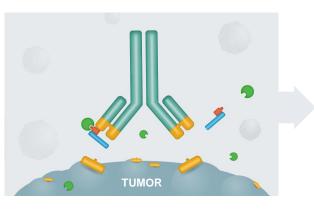
- CD166 is highly expressed in most cancers and normal tissues
 - Probody platform enables tumor targeting
- CX-2009 is a Probody Drug Conjugate targeted to CD166
 - Empowered with a cytotoxic payload
- Preliminary clinical data suggest CX-2009 is active and well tolerated
 - Potential to be a novel, targeted cancer therapy
- CytomX is we are building a pipeline of PDCs directed against first-in-class targets

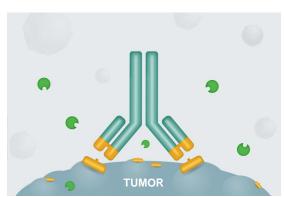
Today's Agenda: New Clinical Disclosures

- Monotherapy clinical activity and safety profile
 - Additional follow-up from dose escalation
 - Part D Selected Indications, Initial
 Snapshot of Safety and Efficacy
- Combination with YERVOY® (Ipilimumab)
 - Additional follow-up from dose escalation

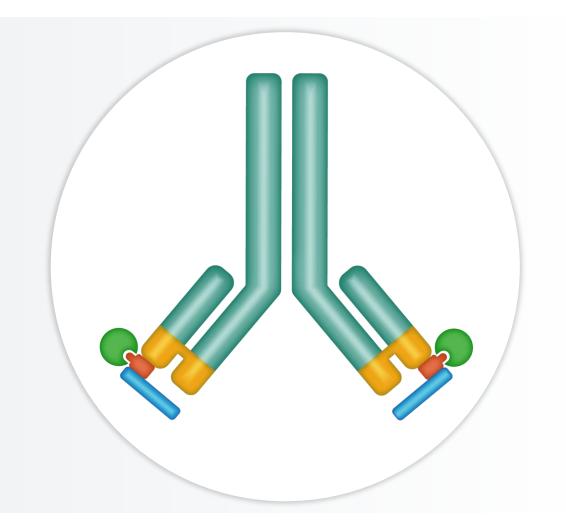

- Initial safety and efficacy from Phase 1 dose escalation
- Preclinical data supporting potential CX-072 + CX-2009 combination





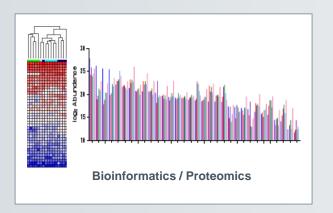


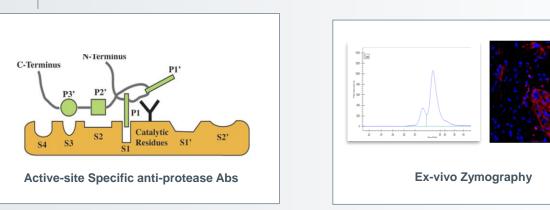
Probody Therapeutics are Designed to be Activated in the Tumor Microenvironment


Activated Proteases are Prevalent in Tumors but Not in Healthy Tissue

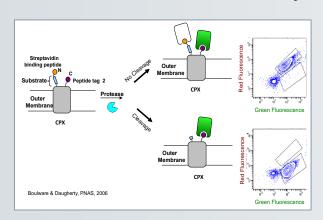
UPREGULATED PROTEASE ACTIVITY IS A HALLMARK OF ALL CANCERS¹ PROTEASE ACTIVITY IS TIGHTLY CONTROLLED IN HEALTHY TISSUES² Transcription PRIMARY TUMOR **METASTASIS** ANGIOGENESIS COLONIZATION Translation **PROLIFERATION** AND OUTGROWTH Substrate AND SURVIVAL Activation Inhibition INFLAMMATION Active protease Protease-inhibitor complex **INVASION** ■ INTRAVASATION **IMAGING OF ACTIVE PROTEASE³ Normal Colon Primary Colon Cancer Metastatic Colon Cancer**

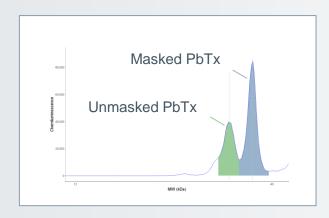
Design of Probody Therapeutics

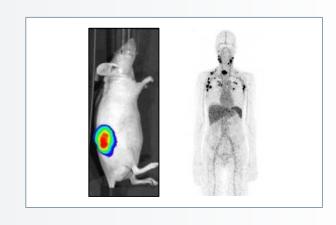

- Mask and protease substrates identified by proprietary peptide display technology
 - Mask is customized for each antibody
 - Protease substrate activatable by multiple tumor-associated proteases
- Both mask and protease substrate can be "tuned" to optimize for given target or format
- Efficient platform manufacturing processes established



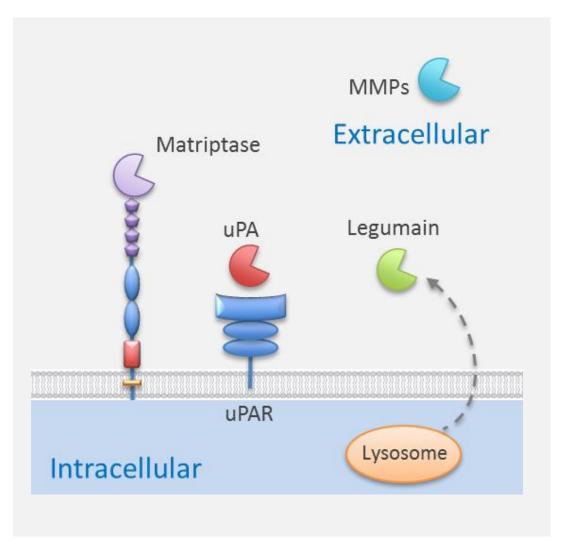
CytomX has Developed Deep Protease Expertise and Novel Methods to Probe the Tumor Microenvironment


Characterizing Protease Expression


Identifying Active Proteases in Tissues


Novel Protease Substrate Discovery

Activation of PbTx in Tumors



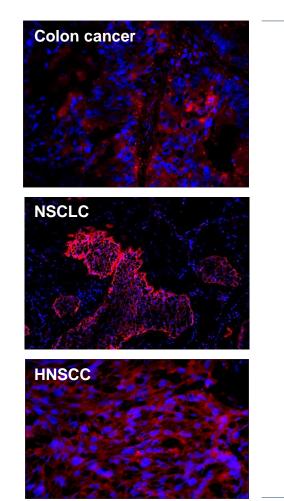
Imaging of PbTx in Vivo

Selection of Protease Substrates for Probody Therapeutics

Lead Substrate Criteria:

- Literature and experimental evidence in human tumors
- Limited cleavage in circulation/normal tissues
- "Universal" cleavage in different tumors
- Can demonstrate widened therapeutic index

Targeted Proteases Include:

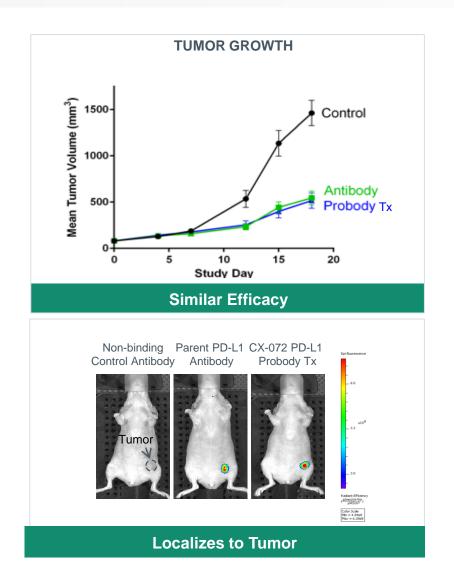

- Matriptase (MT-SP1) membrane serine protease
- uPA secreted serine protease
- Legumain secreted lysosomal protease
- MMPs secreted or membrane bound
- Others not disclosed

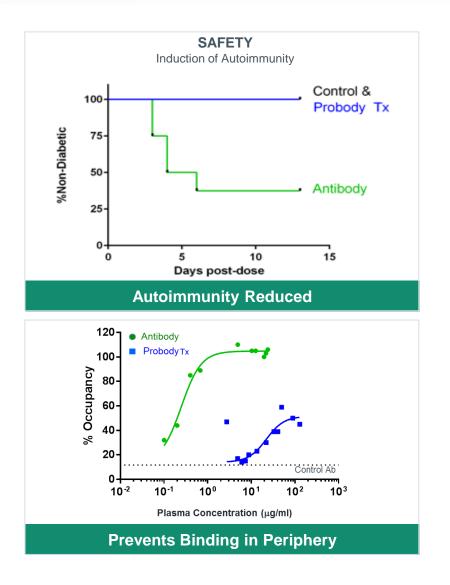
Probody Therapeutics are Designed to be Activated by Most Human Tumors

ASSAYS FOR EX VIVO PROBODY ACTIVATION, n=295

INDICATIONS	% POSITIVE PATIENTS
NSCLC	>90%
CRC	>90%
Pancreatic Cancer	>90%
Breast Cancer	>90%
Prostate Cancer	>90%
HNSCC	>90%
Ovarian Cancer	100%
RCC	90%
Bladder Cancer	100%
Melanoma	>90%
Cholangioma	88%
Endometrial Cancer	65%
Thymoma Cancer	100%

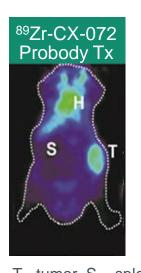
Red indicates activated PbTx



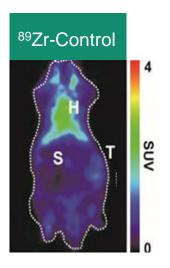

Probody Platform is Potentially Applicable Across Multiple Modalities

IMMUNE MODULATORS/ ANTIBODY T-CELL **CARS BISPECIFICS CHECKPOINT INHIBITORS DRUG CONJUGATES EGFR** CD3 PD-L1 (CX-072) CD166 (CX-2009) EGFR-CD3 **DISCOVERY STAGE** CD71 (CX-2029) CTLA-4 (BMS-986249)

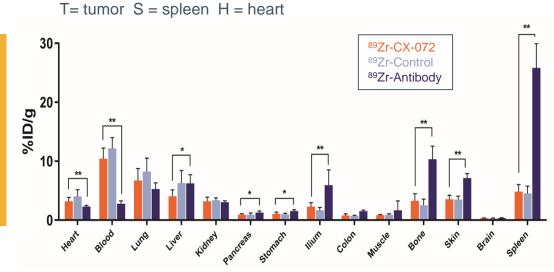
CX-072 Preclinical Proof-of-Concept: Potent Efficacy with Improved Safety



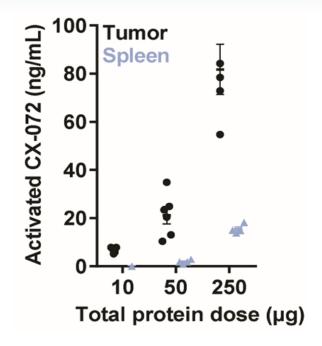




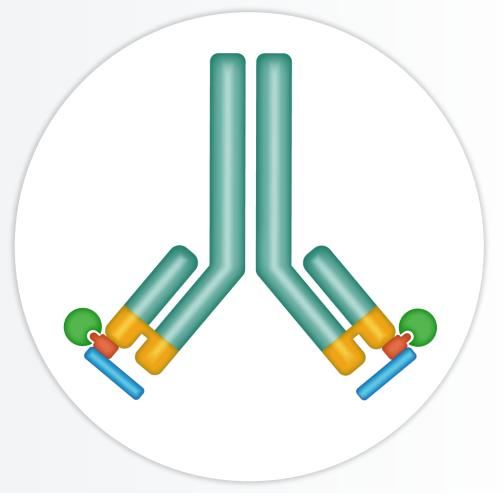
⁸⁹Zr-Labeled CX-072 Concentrates and is Activated in Tumor but Not in Normal Tissues in a Mouse Model


CX-072 Concentrates in Tumors





CX-072
Distribution to
Normal Tissues
is Similar to Nonbinding Control



MDA-MB-231 xenografts in BALB/c nude mice Giesen, et al TAT 2019

Probody Platform Summary

- Fully recombinant, protease-activatable antibody prodrugs
- Potentially can widen or create therapeutic index to enable potent therapeutic mechanisms
- CytomX has developed deep protease expertise and a wide array of tools for characterizing the tumor microenvironment
- Manufacturing process successfully executed at clinical scale for multiple programs
- Versatile platform: Preclinical Proof-of-Concept established in multiple programs and therapeutic modalities

CX-072
A Differentiated
Anti-PD-L1 Probody Therapeutic

Rachel Humphrey, M.D. Chief Medical Officer

CX-072: An Investigational Probody Therapeutic with the Potential to be the a Differentiated PD-Pathway Inhibitor

PD-pathway inhibitor market expected to exceed \$40B by 2022*

- Potent immunotherapies approved to treat a wide range of common tumors
- Inflammatory side effects likely limit the class's full potential
- Safer, effective agents are needed

Today's update reinforces that CX-072 behaves in the clinic as designed

- Durable objective responses
- Safety at 10 mg/kg monotherapy to date compares favorably to historical controls:
 - Grade 3-4 TRAEs: 4% vs. 15% for other PD-pathway inhibitors
- Combination with full dose ipilimumab was generally well tolerated

Broad path to value for an active, safer PD-pathway inhibitor

CX-072 is a Potentially Differentiated Anti-PD Agent with Multiple Paths to Value Creation

MONOTHERAPY

Capture Share of Established Indications

MONOTHERAPY

Advance into Expanded Indications

IPILIMUMAB (CTLA-4)
COMBINATION

Established Indications

IPILIMUMAB (CTLA-4)
COMBINATION

Expanded Indications

ADDITIONAL COMBINATIONS

Clinical Trial Design Monotherapy

^{*} triple negative breast cancer (TNBC), undifferentiated pleomorphic sarcoma (UPS), cutaneous squamous cell carcinoma (cSCC) and anal squamous cell carcinoma (SCC)

^{*} snapshot of the four cancer types shown will be shared today

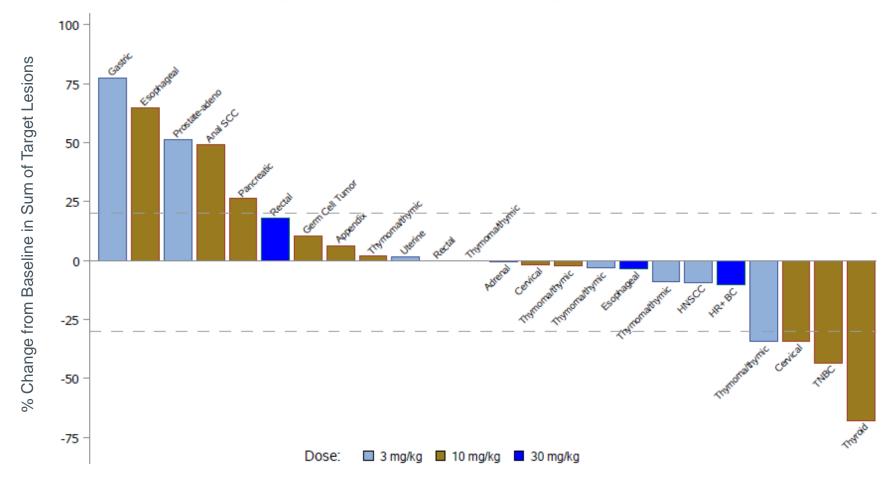
Monotherapy Expansions Underway

INITIAL COHORT EXPANSIONS (ongoing) ESCALATION AND TRANSLATIONAL RESEARCH A: DOSE ESCALATION PD naïve, unselected cancer types D: COHORT EXPANSION STUDIES TNBC, UPS, cSCC, Anal SCC* **A2: MANDATORY BIOPSY** (Merkel cell, Small Bowel, Thymus and hTMB cancers) Selected for PD-L1 positivity Enrollment completed Enrollment ongoing DOSE ESCALATION COMPLETED

- 0.1 30 mg/kg every 2 weeks
- MTD not reached
- 10 mg/kg selected for expansion

- **Expansions ongoing**
- Anti-tumor activity in multiple indications

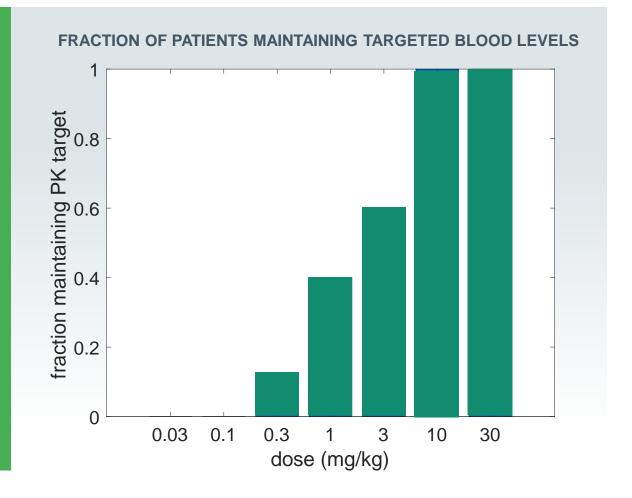
^{*} triple negative breast cancer (TNBC), undifferentiated pleomorphic sarcoma (UPS), cutaneous squamous cell carcinoma (cSCC) and anal squamous cell carcinoma (SCC)



^{*} snapshot of the four cancer types shown will be shared today

Update of Monotherapy Anti-Cancer Activity at ≥ 3mg/kg from Dose Escalation

Best Percent Change from Baseline in Sum of Target Lesion Measurements



10 mg/kg CX-072 Selected as Dose for Part D Expansion Cohorts

At 10 mg/kg every 2 weeks:

- >98% estimated tumor receptor occupancy based on biopsy data
- Favorable safety profile
- Evidence of biological activity
- 100% patients maintained targeted exposure level regardless of anti-drug antibody status*

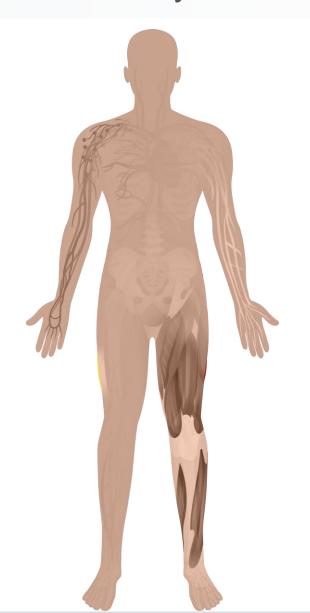
Patient Population: Monotherapy 10 mg/kg in TNBC, UPS, cSCC and Anal SCC*

	Total (N=50)
SUBJECTS, n(%)	
Efficacy Evaluable Population	34 (68.0)
AGE AT ENROLLMENT (YEARS)	
Median (Min-Max)	63.0 (32.0 - 80.0)
NUMBER OF PRIOR CANCER TREATMENT REGIMENS	
Median (Min-Max)	3.0 (1.0 - 10.0)
PD-L1 EXPRESSION, n(%)	
High Expression (≥ 50%)	5 (10.0)
Low Expression (≥1% and <50%)	16 (32.0)
No Expression (< 1%)	20 (40.0)
Unknown	9 (18.0)

Efficacy Evaluable Population includes treated subjects who have measurable disease at baseline and all screening target lesions assessed at one or more postbaseline visits.

^{*} triple negative breast cancer (TNBC), undifferentiated pleomorphic sarcoma (UPS), cutaneous squamous cell carcinoma (cSCC) and anal squamous cell carcinoma (SCC)

High PD-L1 expression is defined by a tumor proportion score (TPS) of membranous staining ≥ 50% based on DAKO PD-L1 IHC 22C3 pharmDx. Low PD-L1 expression is defined as a TPS ≥ 1% and < 50%. No PD-L1 expression is defined as a TPS < 1%.

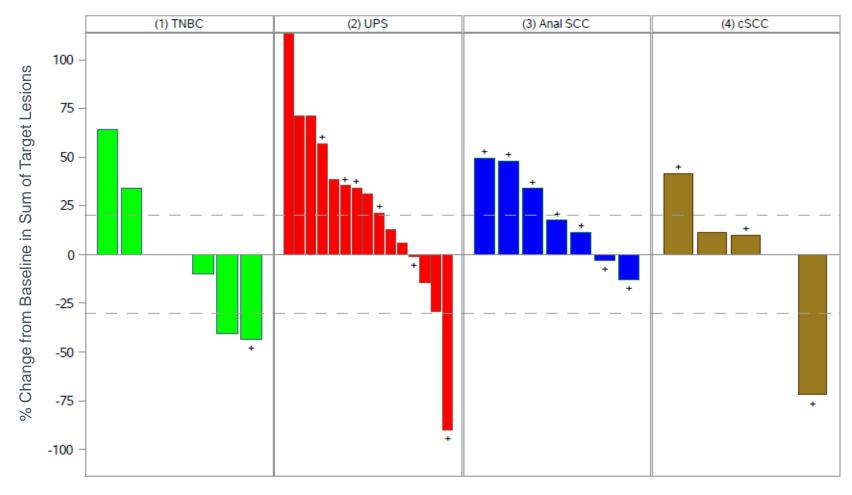

Data cutoff as of February 6, 2019

Selected Cancer Types from Part D Being Presented Today

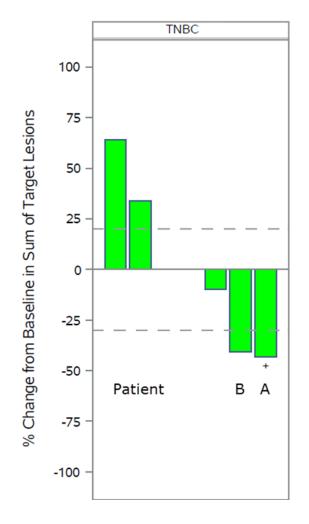
Triple negative breast cancer (TNBC)

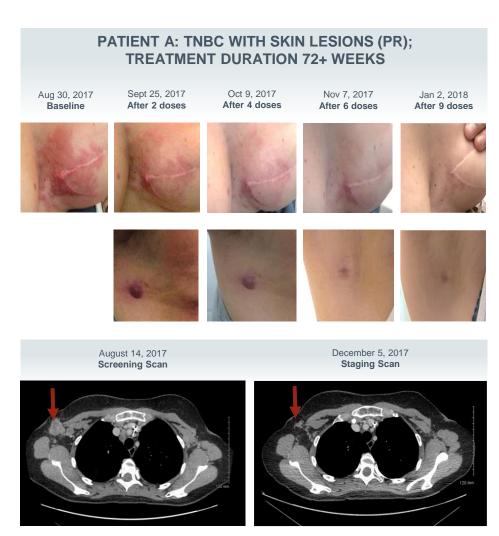
Undifferentiated pleomorphic sarcoma (UPS)

Cutaneous squamous cell carcinoma (cSCC)

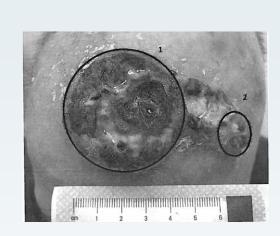

Anal squamous cell carcinoma (SCC)

Early Snapshot: Monotherapy CX-072 is Active in Multiple Tumor Types at 10 mg/kg


Best Percent Change from Baseline in Sum of Target Lesion Measurements, by Cancer Classification



Case Study: Anti-Tumor Activity at 10 mg/kg in TNBC



Case Study:

Cutaneous Squamous Carcinoma (cSCC) Patient

CUTANEOUS SCC SCALP SKIN LESIONS (SECOND-LINE)

Baseline Scan 9/21/18

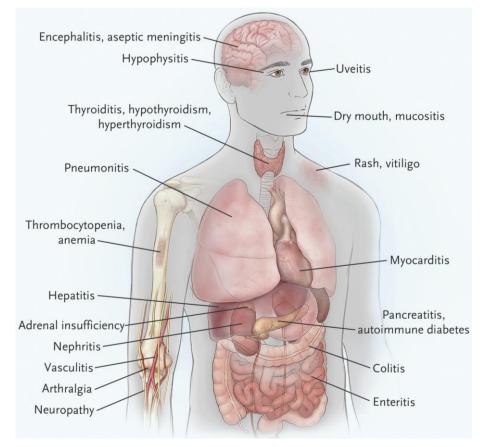
Response Scan 1/25/2019

Preliminary Safety: Monotherapy at 10 mg/kg Limited Number of Grade 3/4 TRAEs

	Total (N=50)*
NUMBER (%) OF SUBJECTS EXPERIENCING	
TEAE Grade 3+	21 (42.0)
Related to CX-072 (TRAE)	2 (4.0)
TEAE Leading to CX-072 Discontinuation	1 (2.0)
Related to CX-072 (TRAE)	0
TEAE Leading to Death	1 (2.0)
Related to CX-072 (TRAE)	0
IRRs	3 (6.0)
Grade 3+	0

^{*} triple negative breast cancer (TNBC), undifferentiated pleomorphic sarcoma (UPS), cutaneous squamous cell carcinoma (cSCC) and anal squamous cell carcinoma (SCC) patients

treatment emergent adverse event (TEAE), infusion-related reactions (IRR)


Data cutoff as of February 6, 2019

Preliminary Safety: Monotherapy at 10 mg/kg Limited Number of Immune-related AEs (irAEs)

Total Datingto
Total Patients (n=50)
Grade 3+ n (%)
2 (4.0)
0
0
0
0
0
1 (2.0)
1 (2.0)

irAEs Reported with PD Inhibitors

Postow et al NEJM 2018

Immune-related AEs (irAEs) are defined as prospectively identified treatment-related AEs that are associated with the use of systemic or topical immunosuppressive agents or hormonal supplementation

*alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT) Data cutoff as of February 6, 2019

CX-072 is a Potentially Differentiated Anti-PD Agent with Multiple Paths to Value Creation

MONOTHERAPY

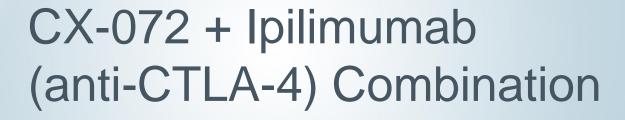
Capture Share of Established Indications

MONOTHERAPY

Advance into Expanded Indications

IPILIMUMAB (CTLA-4)

Established Indications


PILIMUMAB (CTLA-4)
COMBINATION

Expanded Indications

ADDITIONAL COMBINATIONS

Full Potential for Combination Immunotherapy is Limited by Immune-Related Toxicities

CHECKMATE 67: COMBINATION TOXICITIES

	Nivolumab Mono	Ipilimumab Mono	Nivo + Ipi Combo¹
	melanoma	melanoma	melanoma
	3mg/kg every 2 weeks	3mg/kg every 3 weeks	nivo 1mg/kg + ipi 3mg/kg every 3 weeks
ORR	44%	19%	58%
Treatment related Grade 3/4 AEs	16%	27%	55%
Discontinued Drug	8%	15%	36%

RESULTS FROM MSKCC EXPANDED ACCESS PROGRAM²

- 64 patients with advanced or unresectable melanoma
- Nivolumab (1 mg/kg) + Ipilimumab (3 mg/kg)
- 38 (59%) Grade 3/4 irAE
- 46 (72%) required steroids
- 36% irAE causing hospitalizations

CTLA-4 is the most common target evaluated in combination with PD-1/PD-L13

- 1. Larkin et al., NEJM, July 2015.
- 2. Shoushtari AN, et al. JAMA Oncol. 2018; 4(1):98-101. doi:101001/jamaoncol.2017.2391
- 3. Tang J, et al. Nature Reviews Drug Discovery. 17, 854-855 (2018)

Ipilimumab Combination Clinical Trial Design Combination Therapies

ESCALATION AND TRANSLATIONAL RESEARCH

B1: IPILIMUMAB COMBINATION

SELECTED CANCER TYPES

Unselected cancer types

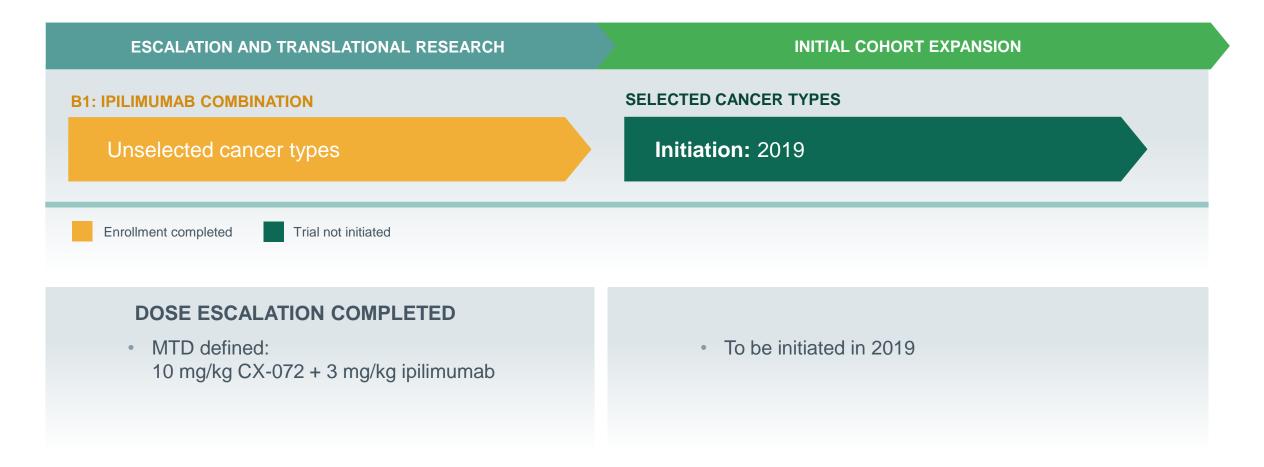
Initiation: 2019

C: VEMURAFENIB COMBO*

PD-naïve V600E BRAF mutated
Advanced melanoma

Enrollment completed

Enrollment ongoing

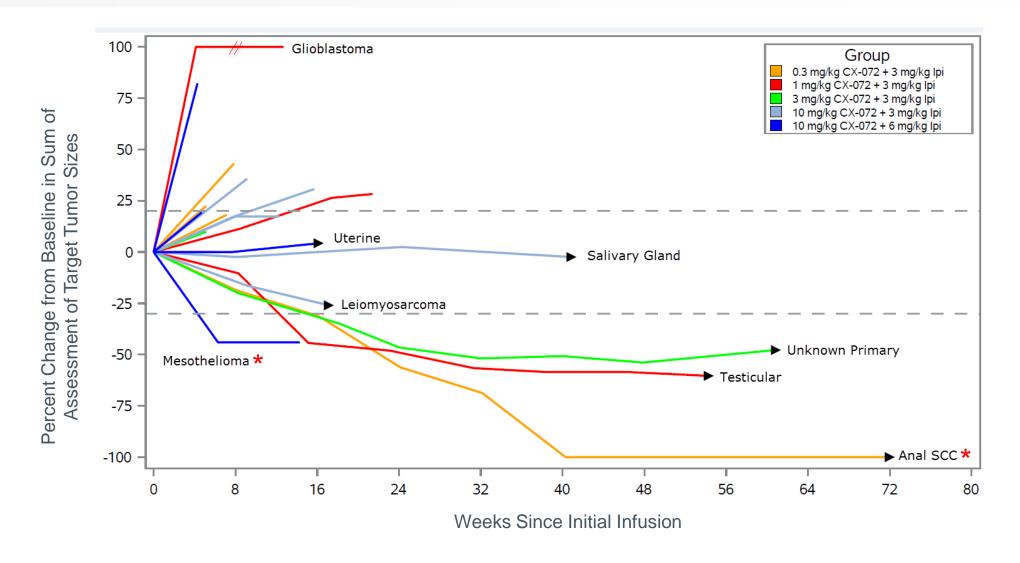

Trial not initiated

* To be presented in 2019

Ipilimumab Combination Dose Escalation Now Complete

CX-072 plus Ipilimumab Combination: Patient Population

	Total (N=27)	10 mg/kg CX-072 +3 mg/kg Ipilimumab (N=8)
SUBJECTS, n(%)		
Efficacy Evaluable Population	19 (70.4)	5 (62.5)
AGE AT ENROLLMENT (YEARS)		
Median (Min-Max)	56.0 (28.0 - 70.0)	58.0 (36.0 - 61.0)
NUMBER OF PRIOR CANCER TREATMENT REGIMENS		
Median (Min-Max)	3.0 (1.0 - 10.0)	3.0 (1.0 - 6.0)
PD-L1 EXPRESSION, n(%)		
High Expression (≥ 50%)	0	0
Low Expression (≥1% and <50%)	5 (18.5)	1 (12.5)
No Expression (<1%)	16 (59.3)	5 (62.5)
Unknown	6 (22.2)	2 (25.0)


CX-072 doses: 0.3, 1, 3, 10 mg/kg; ipilimumab doses 3, 6, 10 mg/kg. 2 DLTs observed with 10 mg/kg CX-072 and 6 mg/kg ipilimumab defined this dose level to be above the MTD

Data cutoff as of February 6, 2019

CX-072 plus Ipilimumab Combination: Durable Responses Observed

CX-072 plus Ipilimumab Combination: Clinically Manageable Safety Profile Compares Favorably to Historical Controls*

Total (N=27)	10 mg/kg CX-072 +3 mg/kg Ipilimumab (N=8)
14 (51.9)	4 (50.0)
7 (25.9)	2 (25.0)
1 (3.7)	0
1 (3.7)	0
0	0
0	0
4 (14.8)	2 (25.0)
1 (3.7)	1 (12.5)
	14 (51.9) 7 (25.9) 1 (3.7) 1 (3.7) 0 0

^{*} Larkin et al., NEJM, July 2015. treatment emergent adverse event (TEAE), infusion-related reactions (IRR) Data cutoff as of February 6, 2019

CX-072 plus Ipilimumab Combination: Rate of irAEs Compares Favorably to Historical Controls*

Preferred Term	Total Patients (n=27)	10 mg/kg CX-072 + 3 mg/kg Ipilimumab (n=8)
	Grade 3+ n (%)	Grade 3+ n (%)
Subjects with an Event	3 (11.1)	0
Pruritus generalised	0	0
Hyperthyroidism	0	0
Hypothyroidism	0	0
Colitis	2 (7.4)	0
Hypophysitis	0	0
Pneumonitis	1 (3.7)	0
Pruritus	0	0
Rash maculo-popular	0	0
Diarrhea	0	0
Immune-mediated hepatitis	0	0

CX-072 is a Potentially Differentiated Anti-PD Agent with Multiple Paths to Value Creation

MONOTHERAPY

Capture Share of Established Indications

MONOTHERAPY

Advance into Expanded Indications

IPILIMUMAB (CTLA-4)
COMBINATION

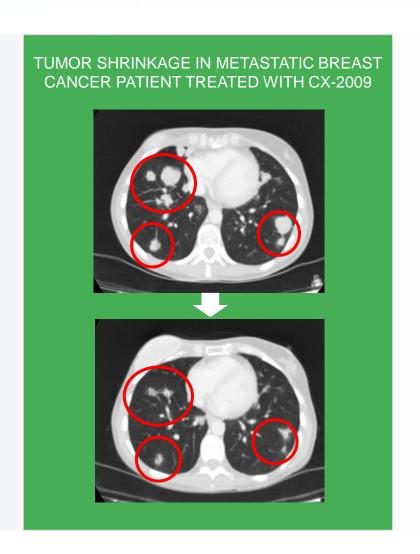
Established Indications

IPILIMUMAB (CTLA-4)
COMBINATION

Expanded Indications

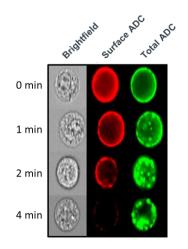
ADDITIONAL COMBINATIONS

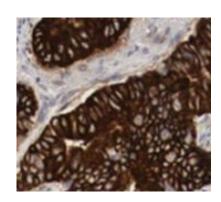
Michael Kavanaugh, M.D.
Chief Scientific Officer and Head of Research and Non-Clinical Development


Rachel Humphrey, M.D. Chief Medical Officer

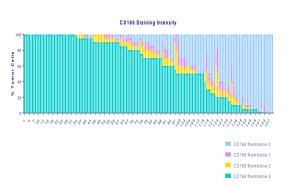
CX-2009 is an Investigational First-in-Class Anti-CD166 Probody Drug Conjugate with Broad Market Potential

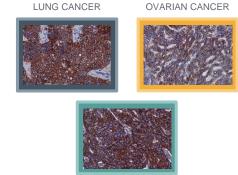
- CD-166 is highly expressed in both cancers and normal tissues
 - Probody platform enables the potential development of this attractive but undruggable target
 - Highly expressed by many different tumors
- SPDB-DM4 payload
 - Clinically validated with historical benchmarks
 - Active in a wide variety of tumors
- Early clinical data suggest CX-2009 is active and safe
 - Anti-cancer activity at doses as low as 4 mg/kg
 - Dose escalations as high as 10 mg/kg

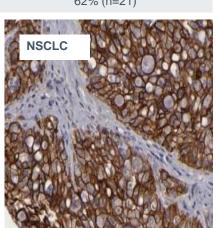

The Probody Platform Potentially Enables an Attractive Class of ADC Targets


Best Internalizing Targets Highest Possible Membrane Expression

Uniform Tumor Expression

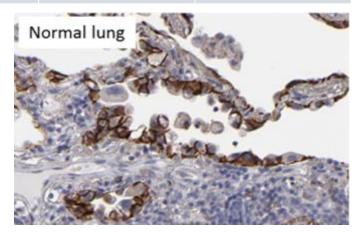

Majority Patients
Express at High Level

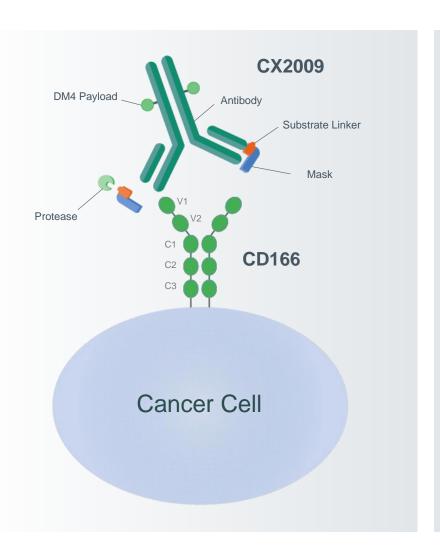

Highly Expressed in Multiple Common Cancers


BREAST CANCER

These targets are typically expressed highly in normal tissues = not suitable for traditional ADC

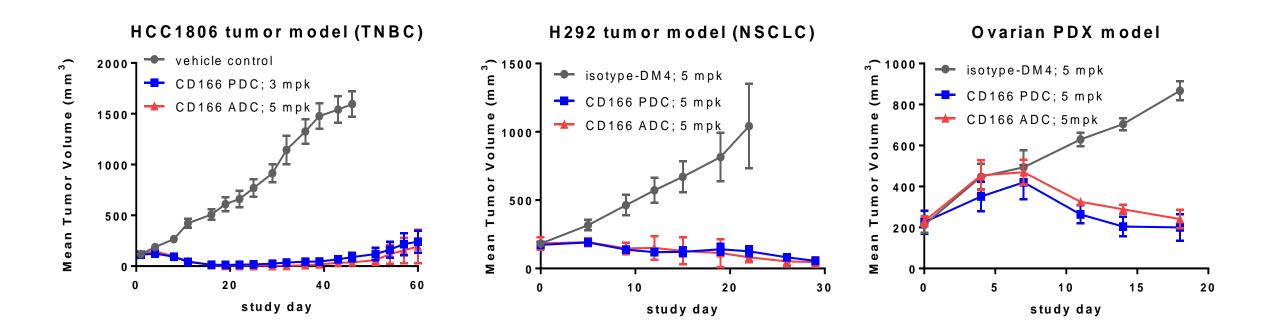
CD166 is Highly Expressed in Many Human Cancers and in Normal Tissues


	CANCERS		
	Commercial	PROCLAIM CX-2009	
	Samples	Samples	
	% Patients with highest C	D166 expression (IHC 3+)	
Prostate	89% (n=119)	0% (n=2)	
Breast	70% (n=533)	79% (n=95)	
NSCLC	60% (n=465)	64% (n=22)	
Endometrial	57% (n=315)	67% (n=3)	
Ovarian	52% (n=129)	59% (n=107)	
HNSCC	49% (n=122)	62% (n=21)	


PROCLAIM Data as of January 28, 2019

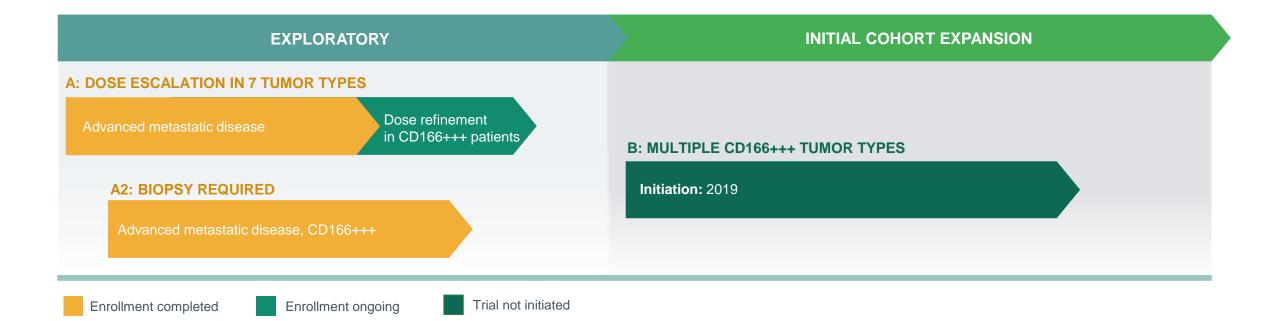
NORMAL TISSUES

CD166 Expression by IHC			
Breast	2+	Pancreas	2+
Colon	2+	Prostate	3+
Liver	2+	Small Intestine	2+
Lung	1+	Stomach	3+
Ovary	1+	Uterus	2+

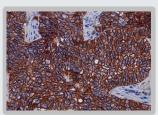

CX-2009: A Probody Drug Conjugate Targeting CD166

- Probody technology applied to proprietary anti-CD166 antibody
- SPDB-DM4 payload
 - Microtubule inhibitor active vs. multiple cancers
 - Expected DM4-related, off-target toxicities well characterized, including
 - ocular toxicity
 - neutropenia
 - peripheral neuropathy
 - CD166-predominant on-target toxicities should be recognized

CX-2009 is Highly Active and Well-tolerated in Preclinical Models



- CX-2009 active in multiple mouse xenograft and PDX models at doses ≤ 5mg/kg
- Non-clinical safety observations consistent with typical off-target, DM4 payload toxicity at up to 15 mg/kg


Clinical Trial Design

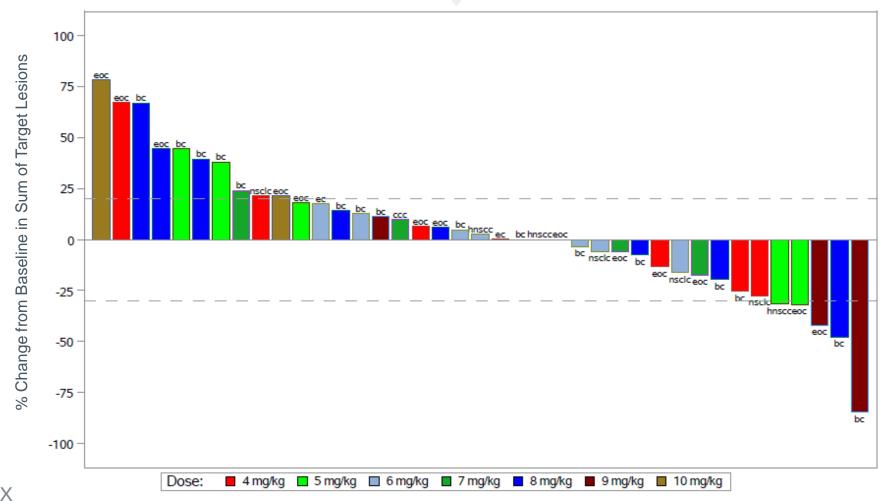
SEVEN TUMOR
TYPES IN
MONOTHERAPY
DOSE ESCALATION
ARM:

- Breast cancer
- Castration-resistant prostate cancer
- Cholangiocarcinoma
- Endometrial cancer
- Head and neck cancer
- Non-small cell lung cancer
- Ovarian cancer

BREAST CANCER

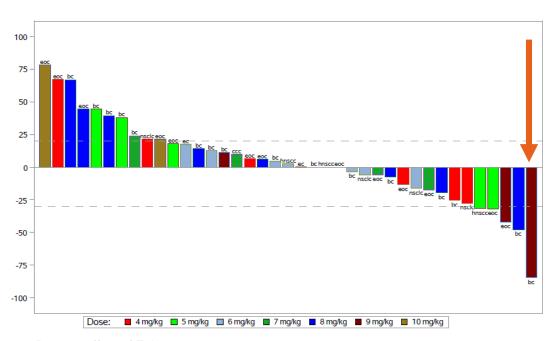
OVARIAN CANCER

Patient Population in Parts A and A2

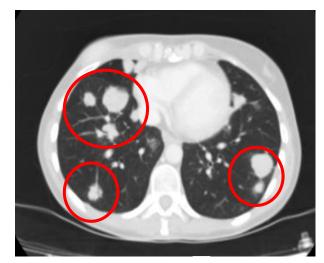

	Total (N=76)
SUBJECTS, n(%)	
Efficacy Eligible Population	46 (60.5)
AGE AT ENROLLMENT (YEARS)	
Median (Min-Max)	57.5 (31.0 - 79.0)
NUMBER OF PRIOR CANCER TREATMENT REGIMENS	
Median (Min-Max)	6.0 (1.0 – 22.0)
CD166 STATUS AT BASELINE, n(%)	
High Expression	55 (72.4)
Low Expression	13 (17.1)
Unknown	8 (10.5)
HISTORY OF ANTI-PD-1/PD-L1, n(%)	
Yes	24 (31.6)
No	52 (68.4)

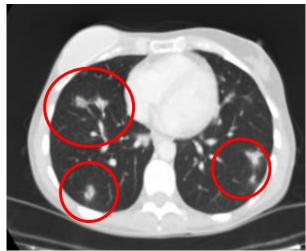
Evidence of Anti-Cancer Activity in Variety of Cancer Types at Doses at or above 4 mg/kg

Parts A and A2 Patients at 4 mg/kg Doses and Up Best Percent Change from Baseline in Sum of Target Lesion Measurements



56

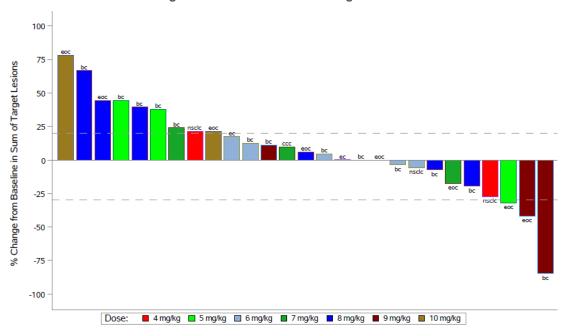



Case Study: Heavily Pre-Treated TNBC Patient Treated with 9 mg/kg CX-2009

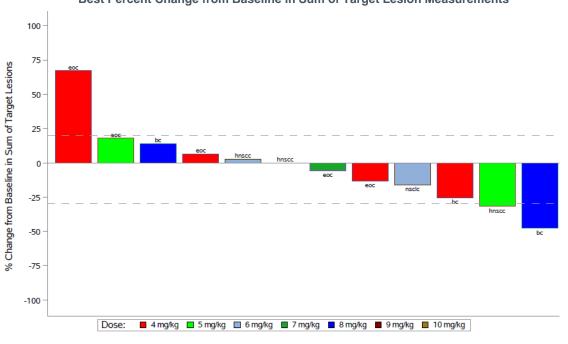
September 4, 2018 BASELINE October 8, 2018 2 Doses

Data cutoff as of February 6, 2019

*9 prior regimens including chemotherapy, XRT, hormones



Anti-Cancer Activity Seen in Patients with Prior Experience on PD Inhibitors

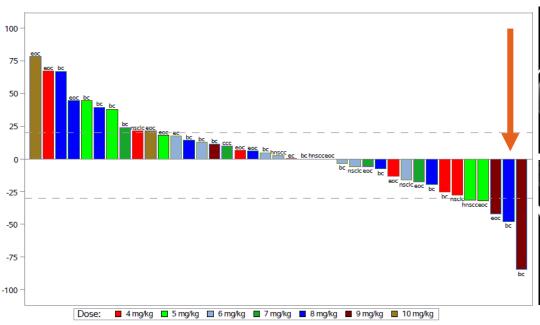

No Prior PD-pathway Inhibitors

Parts A and A2 Patients at 4 mg/kg Doses and Up that are PD Pathway Inhibitor Naive Best Percent Change from Baseline in Sum of Target Lesion Measurements

Prior PD-pathway Inhibitors

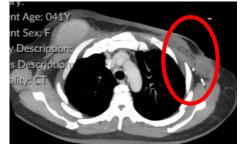
breast carcinoma (BC) cholangiocarcinoma (CCC); castration-resistant prostate cancer (CRPC); edometrial carcinoma (EC); head and neck squamous cell carcinoma (HNSCC); non-small cell lung cancer (NSCLC); epithelial ovarian carcinoma (eOC)

Data cutoff as of February 6, 2019



Case Study: Pembrolizumab-refractory TNBC Patient at 8 mg/kg

July 16, 2018 BASELINE


September 11, 2018 3 DOSES

November 12, 2018 6 DOSES

New lesion observed. Progression noted.

Dose Escalation: Safety Overview

	Total (N=76)
NUMBER (%) OF SUBJECTS EXPERIENCING	
TEAE Grade 3+	47 (61.8)
Related to CX-2009 (TRAE)	23 (30.3)
TEAE Leading to CX-2009 Discontinuation	11 (14.5)
Related to CX-2009 (TRAE)	10 (13.2)
TEAE Leading to Death	2 (2.6)
Related to CX-2009 (TRAE)	0
IRRs	16 (21.1)
Grade 3+	1 (1.3)

Grade 3/4 Treatment Related Adverse Events Observed in ≥ 2 Patients

	< 4mg/kg (N=10)	4-5 mg/kg (N=19)	6-7 mg/kg (N=18)	8-9 mg/kg (N=21)	10 mg/kg (N=8)
TOTAL SUBJECTS WITH GRADE 3-4 TRAEs	0	4 (21.1)	4 (22.2)	11 (52.4)	4 (50)
EYE DISORDERS	0	1 (5.3)	0	5 (23.8)	1 (12.5)
METABOLISM AND NUTRITION DISORDERS	0	0	2 (11.1)	2 (9.5)	0
LIVER FUNCTION TESTS	0	0	0	1 (4.8)	3 (37.5)
GASTROINTESTINAL DISORDERS	0	0	1 (5.6)	2 (9.5)	1 (12.5)
NERVOUS SYSTEM DISORDERS	0	1 (5.3)	2 (11.1)	0	0

Data cutoff as of February 6, 2019

Next Steps

DOSE ESCALATION COMPLETED

- 0.25 to 10 mg/kg every 3 weeks
- MTD not reached
- Anti-tumor activity observed at doses > 4 mg/kg

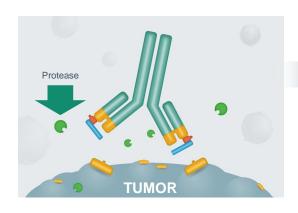
DOSE REFINEMENT UNDERWAY

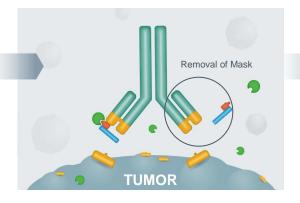
- Ocular prophylaxis introduced
- mTPI-guided* approach

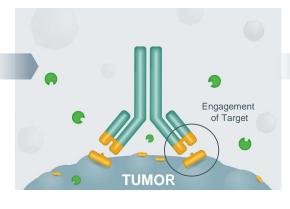
INITIAL EXPANSION COHORTS

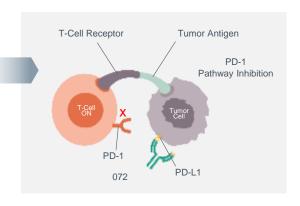
- Pending dose selection
- Expected to start in 2019




Michael Kavanaugh, M.D.


Chief Scientific Officer and Head of Research and Non-Clinical Development





Translational Program Designed to Provide Evidence of Probody MOA and Biological Activity in Patients

POTENTIAL PREDICTIVE MARKERS

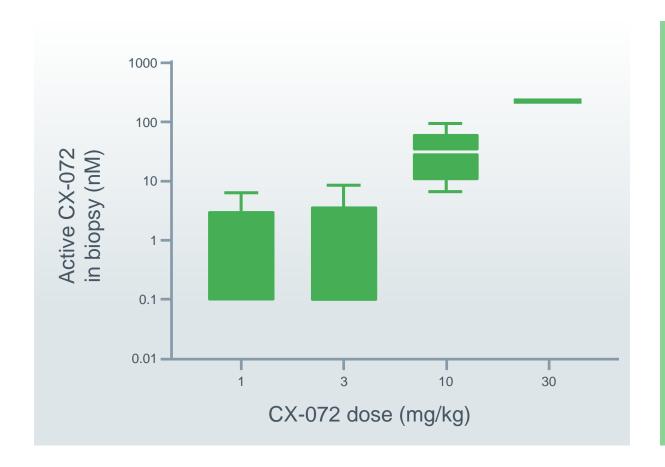
- PD-L1 levels in tumor (IHC)
- Relevant protease activity in patient biopsies
- Tumor mutational burden

PROBODY-TX ACTIVATION IN TUMOR

Probody-Tx
 activation/unmasking:
 analyzed by capillary
 electrophoresis
 immunoassay

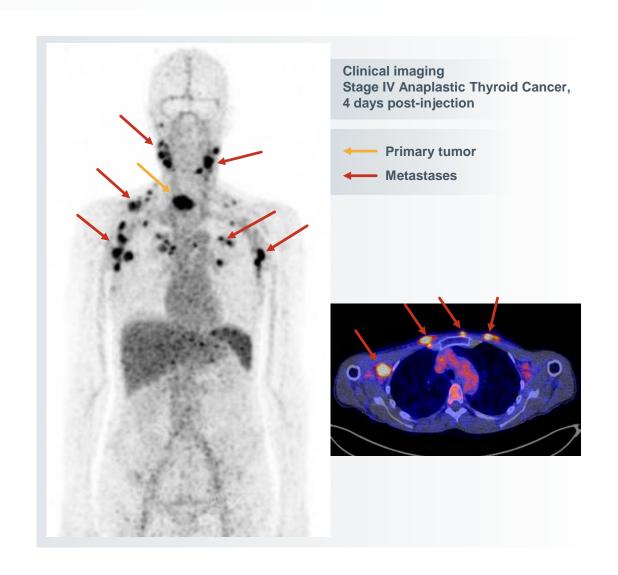
PROBODY-TX LOCALIZATION IN TUMOR

 89Zr-CX-072 Immuno-PET imaging

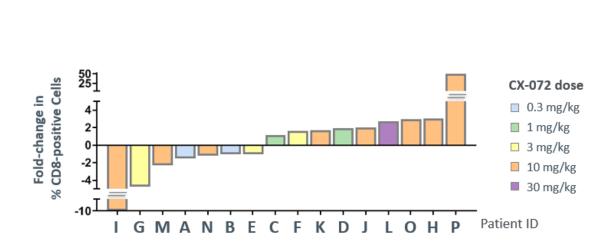

PD-L1/PD-1 PATHWAY INHIBITION

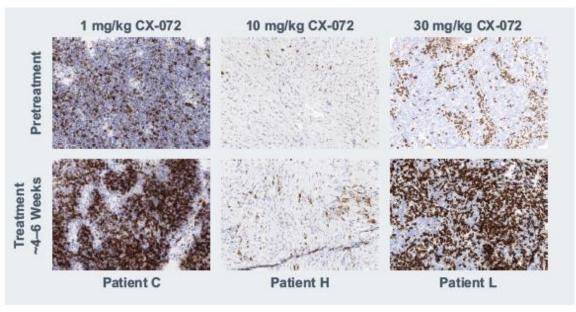
 Markers of immune system activation: assessed by IHC and mRNA expression

Activated/Unmasked CX-072 is Detected in Human Tumors at Doses ≥1 mg/kg

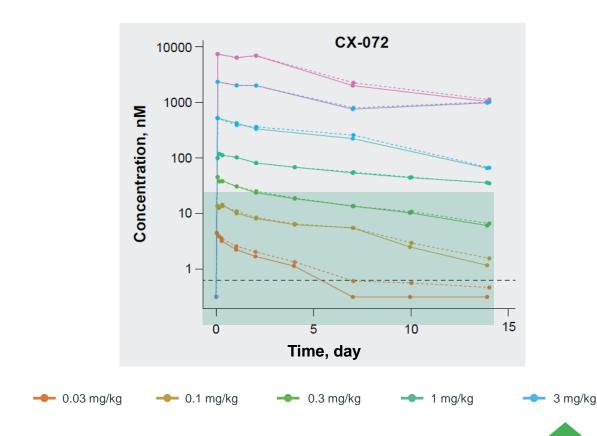

- Intratumoral activated CX-072 increased with dose
- Estimated Intratumoral Target
 Occupancy of PD-L1 by
 Activated/Unmasked CX-072 Exceeds
 98% at Doses ≥3 mg/kg
- 10 mg/kg is being studied in Part D expansion cohorts

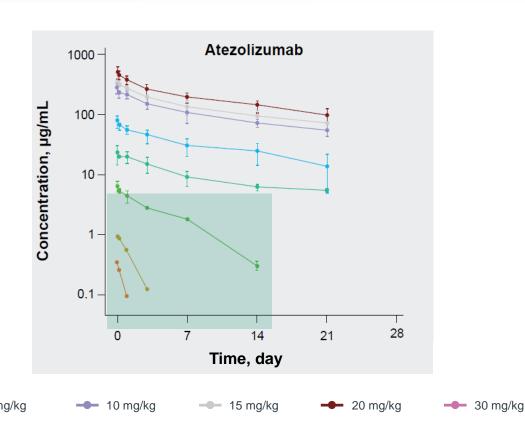
- Data as of January 28, 2019
- <LLOD or <1/2 LLOQ graphed as 0.1 nM
- 0.5-1.0X LLOQ graphed at ½ LLOQ


Immuno-PET Imaging Demonstrates CX-072 Uptake in Human Tumors

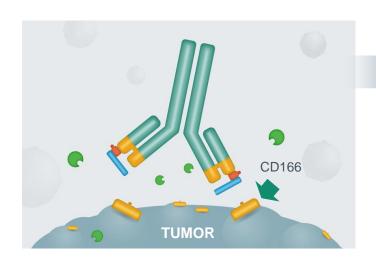

- Collaboration with Professor E. G. E. de Vries, University Medical Center Groningen, The Netherlands
- Uptake of ⁸⁹Zr-labeled CX-072 in tumors demonstrated in multiple patients
 - Patient with unconfirmed PR shown
- Suggests unmasking and engagement of CX-072 with its tumor target, PD-L1
- Study is ongoing

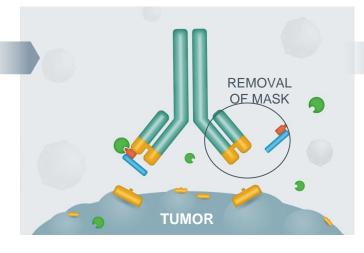
CX-072 Treatment Increases Levels of CD8+ T Cells in Patient Tumors

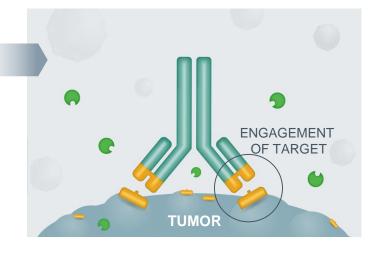

Data as of January 28, 2019


Consistent with inhibition of the PD-1: PD-L1 pathway

Dose Escalation: CX-072 Circulates Predominantly As Intact Prodrug




- Single-dose CX-072 PK data and PK modelling suggest that CX-072 circulates predominantly as the intact prodrug species
- Clearance is minimally influenced by target mediated drug disposition



Translational Program Designed to Demonstrate Probody Mechanism of Action and Utility of Patient Selection

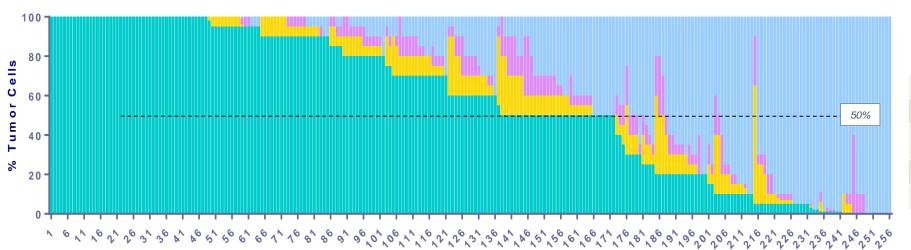
POTENTIAL PREDICTIVE MARKERS

CD166 Membrane Expressionarchival, screening, on-treatment biopsies

PROBODY-TX ACTIVATION IN TUMOR

Cleavage of CX-2009 mask
 capillary electrophoresis in tumor biopsies

PROBODY-TX LOCALIZATION IN TUMOR


CX-2009 imaging

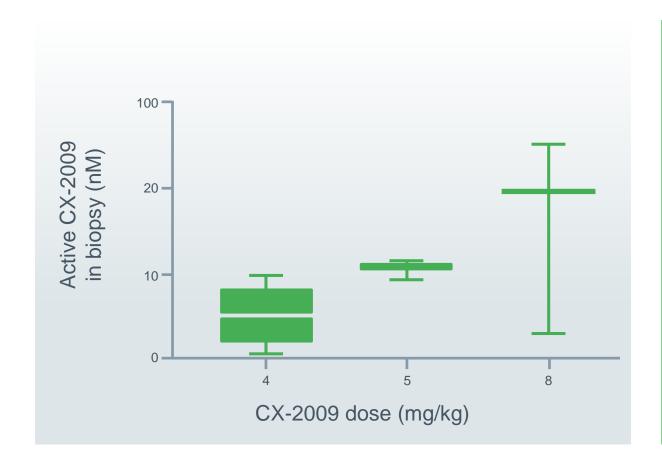
Majority of Patients have CD166+++ Tumors

CD166 Staining Intensity

% Patients with highest CD166 expression (IHC 3+)
79% (n=95)
64% (n=22)
67% (n=3)
59% (n=107)
62% (n=21)

as of January 28th 2019

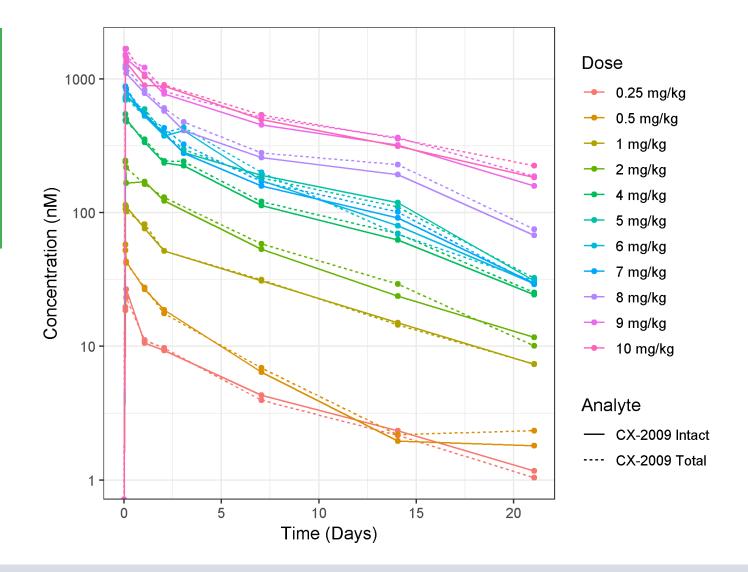
Stringent definition of high expression: 3+ staining of membrane in ≥50% tumor cells



Verified data as of Dec. 26th 2018

Activated/Unmasked CX-2009 is Detected in Human Tumors

- Initial 11 evaluable samples analyzed from 4-8 mg/kg dose levels
- Intratumoral activated CX-2009 increased with dose



- Data as of January 28, 2019
- <LLOD or <1/2 LLOQ graphed as 0.1 nM
- 0.5-1.0X LLOQ graphed at ½ LLOQ

PK is Consistent with Effective Peripheral Masking

 Single-dose CX-2009 PK data suggest that CX-2009 circulates predominantly as the intact prodrug species

Translational Programs: Summary

PROTEOLYTIC ACTIVATION OF CX-072 and CX-2009

- Protease activity can be detected in majority of patient tumors
- Both CX-072 and CX-2009 are unmasked/activated in human tumors
- CX-072 localizes to human tumors by Immuno-PET imaging
- Both CX-072 and CX-2009 are predominantly intact in circulation

BIOLOGICAL ACTIVITY OF CX-072

- Intratumor concentrations of unmasked/activated CX-072 are estimated to be sufficient for high-level target occupancy
- Similar concentrations are associated with efficacy in a preclinical model
- CX-072 treatment is associated with expansion of intratumoral CD8+ T cells

CD166 EXPRESSION

The majority of patients highly express CD166 even without preselection

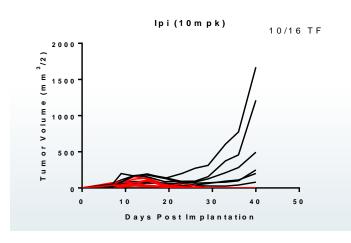
CONCLUSION

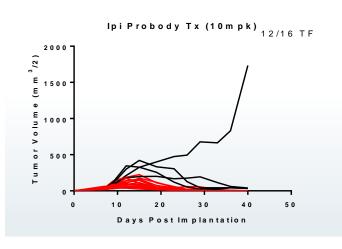
- CX-072 and CX-2009 appear to function as designed in cancer patients
- Findings are consistent with observed safety and activity of CX-072

Next Wave of Innovation

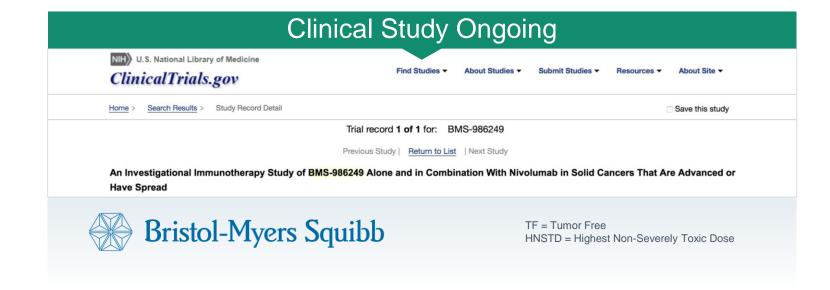
Michael Kavanaugh, M.D.

Chief Scientific Officer and Head of Research and Non-Clinical Development



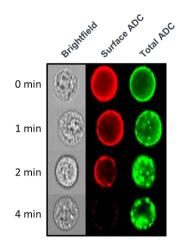

Probody Platform is Potentially Applicable Across Multiple Modalities

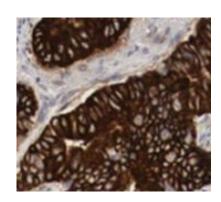
T-CELL **IMMUNE MODULATORS/ ANTIBODY CARS CHECKPOINT INHIBITORS DRUG CONJUGATES BISPECIFICS EGFR** CD3 PD-L1 (CX-072) CD166 (CX-2009) EGFR-CD3 **DISCOVERY STAGE** CTLA-4 (BMS-986249) CD71 (CX-2029)



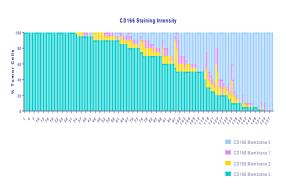
The Ipilimumab Probody Therapeutic BMS-986249 Has Similar Efficacy and Improved Safety in Preclinical Models

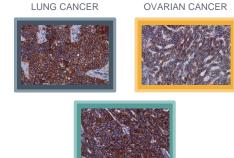
Toxicity in Cynomolgus Monkeys		
	ipilimumab	BMS-986249
HNSTD*	10 mg/kg	>50 mg/kg

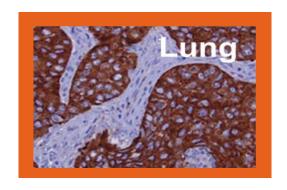

The Probody Platform Potentially Enables an Ideal Class of ADC Targets


Best Internalizing Targets Highest Possible Membrane Expression

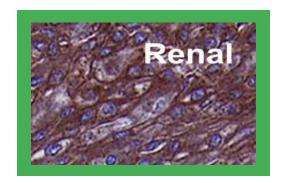
Uniform Tumor Expression

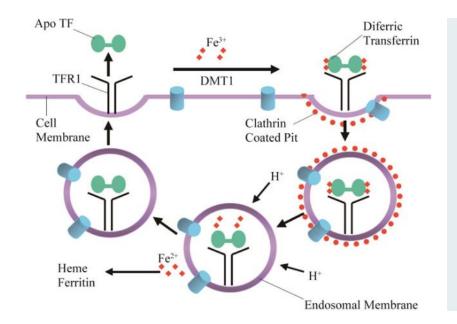

Majority Patients
Express at High Level


Highly Expressed in Multiple Common Cancers

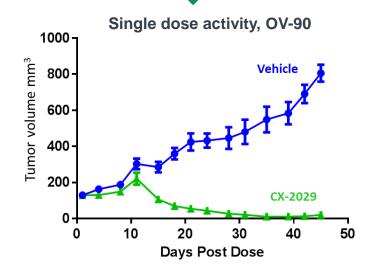


BREAST CANCER


These targets are typically expressed highly in normal tissues = not suitable for traditional ADC

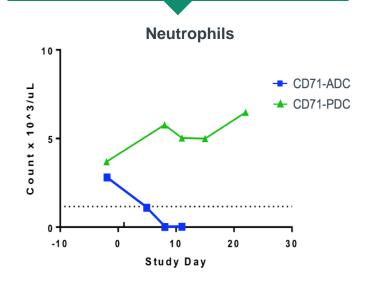

CD71 is a High Potential Target for a Probody Drug Conjugate

- Ubiquitously expressed on dividing, normal and malignant cells
- Mediates iron uptake required for cell division
- Professional internalizing protein: The gold standard in ADC experiments
- Expression in normal dividing cells prohibits development of a traditional ADC



J. Cancer Ther. (2012)

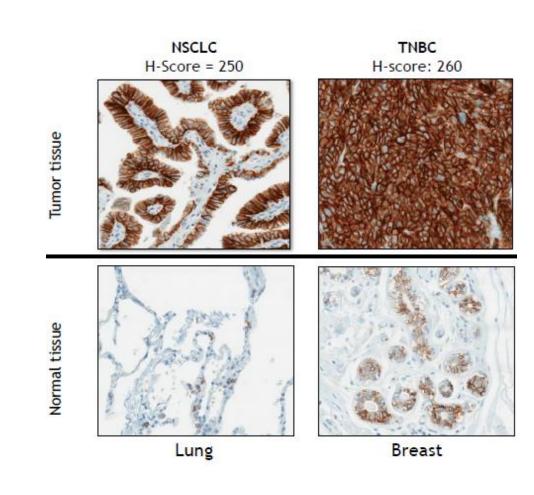
Probody Platform has the Potential to Enable CD71 as a Drug Conjugate Target


PDC REGRESSES TUMORS AFTER A SINGLE DOSE IN MICE

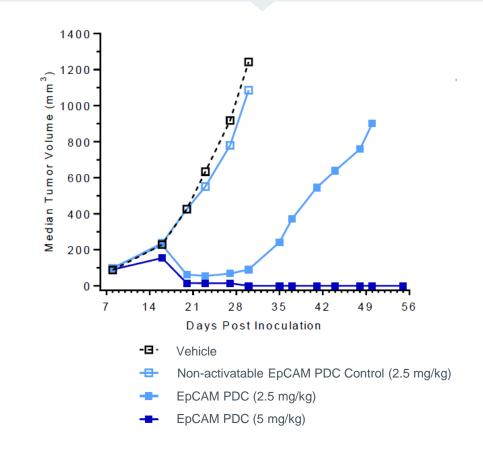
PDC HAS EFFICACY ACROSS ALMOST ALL PRECLINICAL MODELS

Models tested	42
Regression or stasis	30 (71%)
Growth inhibition	10 (24%)
No response	2 (5%)

IN NON-HUMAN PRIMATES, PDC CREATES THERAPEUTIC WINDOW

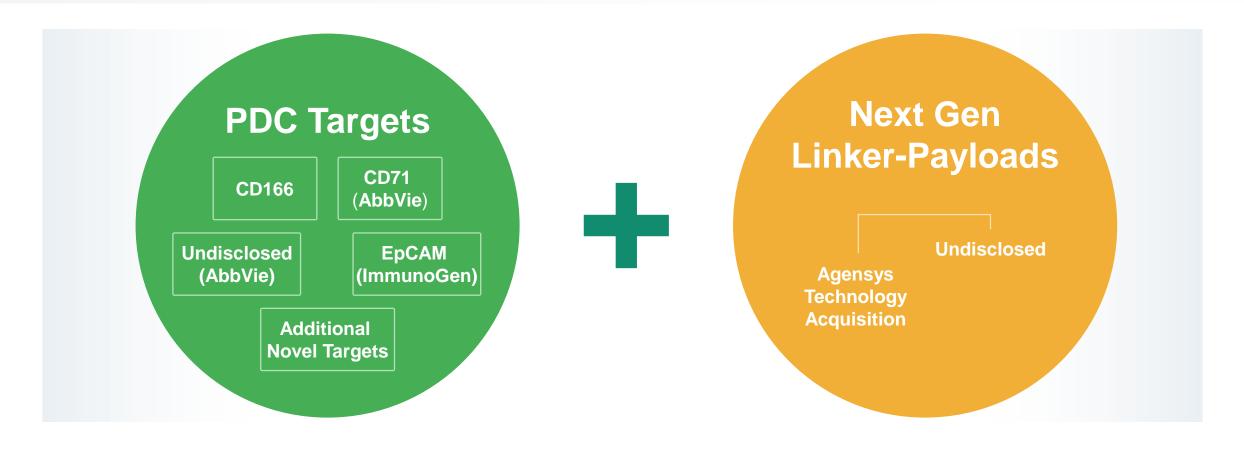

Partnered with AbbVie: Co-development rights and profit split; \$25M milestone to CytomX received July 2018; Enrolling Phase 1/2 Trial

EpCAM is a High Potential Target for a Probody Drug Conjugate

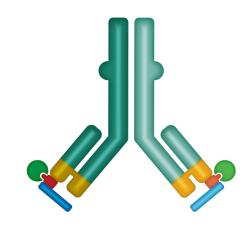

- Discovered in 1970
- Over-expressed in multiple cancers, normal tissues
- Prior attempts to target limited by
 - pancreatitis with high affinity antibodies
 - poor activity with low affinity antibodies
- Only successful EpCAM-targeted therapies were delivered locally, with limited utility
- The Probody technology has the potential to enable potent, tolerated, systemic EpCAM-targeted PDC

Probody Technology Creates a Therapeutic Window for EpCAM ADCs

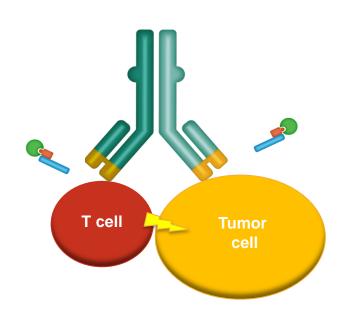
Tumor Regression in H2110 NSCLC Model


Improved Tolerability in Non-human Primates

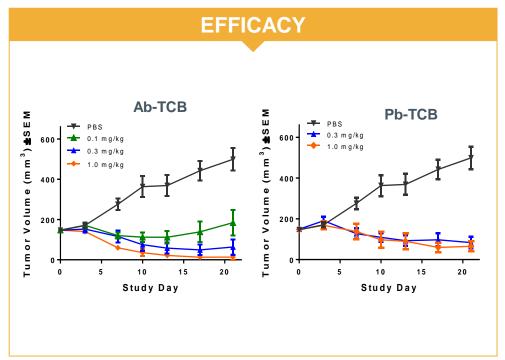
CytomX is Building a Pipeline of PDCs to First-in-Class Targets and With Next Generation Linker-Payload Technologies

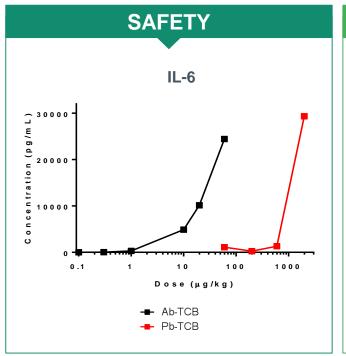

Probody Technology + Next Generation Linker-Payloads
Potentially Address Both On-target And Off-target Toxicities

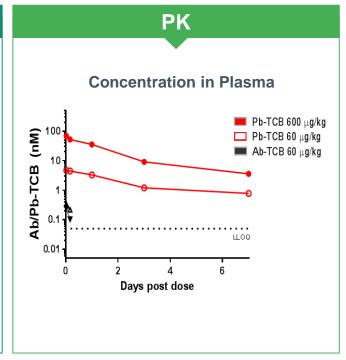
Probody T-cell Engaging Bispecific Therapeutics (Pb-TCBs) are Designed to Enable Use in Solid Tumors


T-cell Engaging
Bispecific
Antibodies
(Ab-TCBs)

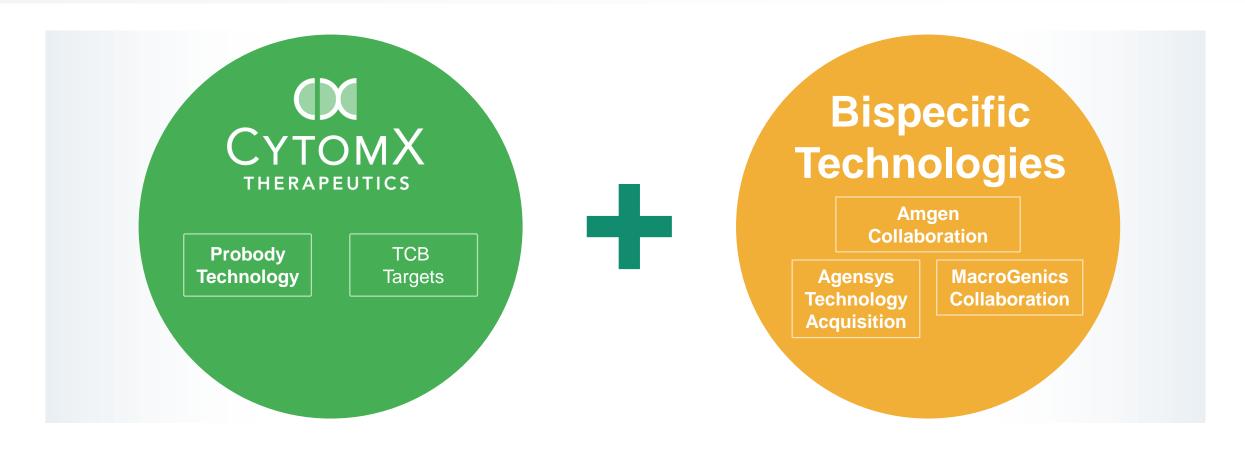
- Bring cytotoxic T cells, cancer cells together
- Highly potent but toxic modality
- Challenging to use for solid tumors: unforgiving for target expression on normal tissue
- Poor exposure


T-cell Engaging
Probody
Bispecific
Therapeutics
(Pb-TCBs)
Potential


- Potent anti-tumor activity
- Less systemic toxicities by avoiding T cell engagement outside of tumor
- Better exposure
- Expands utility, especially for solid tumors



EGFR-CD3 Probody TCB has Exhibited Potent Preclinical Efficacy, Improved Safety and PK



Partnered with Amgen: Co-development rights and profit split; \$40M upfront payment to CytomX received October 2017

CytomX is Combining Probody Technology with Industry-Leading Bispecific Technologies to Build a Pb-TCB Pipeline

Probody Technology + Best-in-class Bispecific Technologies = Opportunity to Potentially Address Solid Tumors with Pb-TCBs

Ongoing and Future Research Avenues

NEXT-GENERATION
PROTEASE
SUBSTRATES AND
MASKING STRATEGIES

- Goal is to widen therapeutic window even farther
- Proprietary and novel screening methods
- Substrates with improved properties have already been identified and are being integrated into the pipeline

PREDICTIVE BIOMARKERS

- Goal is to identify which patients respond best to our drugs
- Using both de novo discovery and learnings from the clinic

NEW APPLICATIONS
OF PROBODY
TECHNOLOGY

Non-antibody masking, new therapeutic areas

Probody™ Therapeutics: Perspectives from a PROCLAIM Clinical Investigator

Alex Spira, M.D. Ph.D.

Director, Clinical Research Program and Phase 1 Program, Virginia Cancer Specialists
Chair, US Oncology Thoracic Oncology and Research Executive Committee
Assistant Professor of Medicine, Johns Hopkins University

Disclosures

FUNDING, TRAVEL AND HONORARIA PROVIDED BY CYTOMX THERAPEUTICS

My Practice

- Large Community Practice with Intense Research Program
 - Phase I, First in Human, Complex Research Program
- 36 Physicians, Northern Virginia
- Current Regimen Breakdown:
 - Immuno-oncology 20-25%
 - ADC's and Monoclonal Antibodies 40-50%
 - >70% of revenue
 - Used in all tumor types and ever growing

The Unmet Need in Immuno-Oncology

Despite great advances, obstacles still exist

- Toxicities are real and meaningful
 - Diarrhea, Pneumonitis
 - 15-20% in studies, higher in real world
 - Worse in combinations
- Significant limitation and fear of PDL/CTLA-4 combos
 - Dose reductions for toxicity may reduce efficacy

- Physician Hesitation
 - I/O Drugs in Patients with autoimmune diseases, contraindications
- Long-Term Use
 - Balancing efficacy and cumulative toxicity

The Unmet Need with Targeted Therapies

Limited Number of Great Targets

- Typically effective in small patient populations
- Increasing understanding and use
- Most patients do not benefit despite the hoopla

 Targets like CD166 could bring the advantages of good targeted agents to more patients

Current Therapies Have Limitations

Current PD-L1 Agents

- Toxicities
- Efficacy

ADC Agents

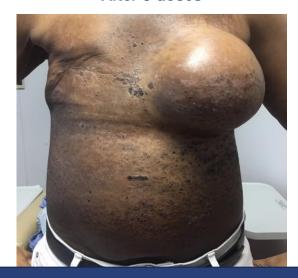
- Small # of Targets
- Unsafe toxin
- Target on normal tissues
- Anticipated Innovations:
 - More targeted treatments
 - Personalized biomarker profiles
 - Drug combinations

My History with the Probody Platform

- Why is this approach needed in today's treatment climate?
- Why do we need CX-072—"another PDL therapy"?
- Reflected on the limitations of the current treatment landscape
- PROCLAIM Model provided elegant approach to work with the Probody platform, just not individual molecules

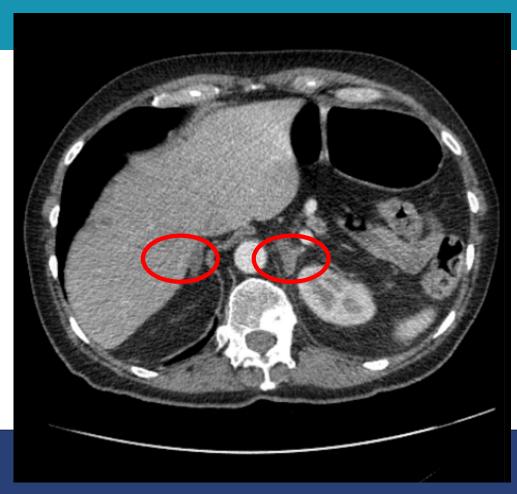
PROCLAIM-CX-072: Case Study

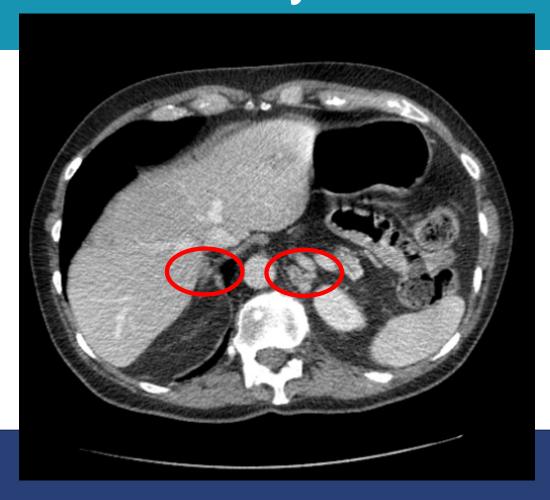
TNBC with Skin Lesions (UPR); Treatment Duration 20+ Weeks


August 9, 2018
Baseline

September 5, 2018 After 1 doses

October 3, 2018 After 3 doses


October 3, 2018 After 3 doses


Triple Negative Breast Cancer with Skin Lesions

Breast—4 cycles still ongoing TNBC, heavily pretreated - Had no other options

PROCLAIM-CX-2009: Case Study

Non-Small Cell Lung Cancer

Lung-was on for about a year, stable disease..

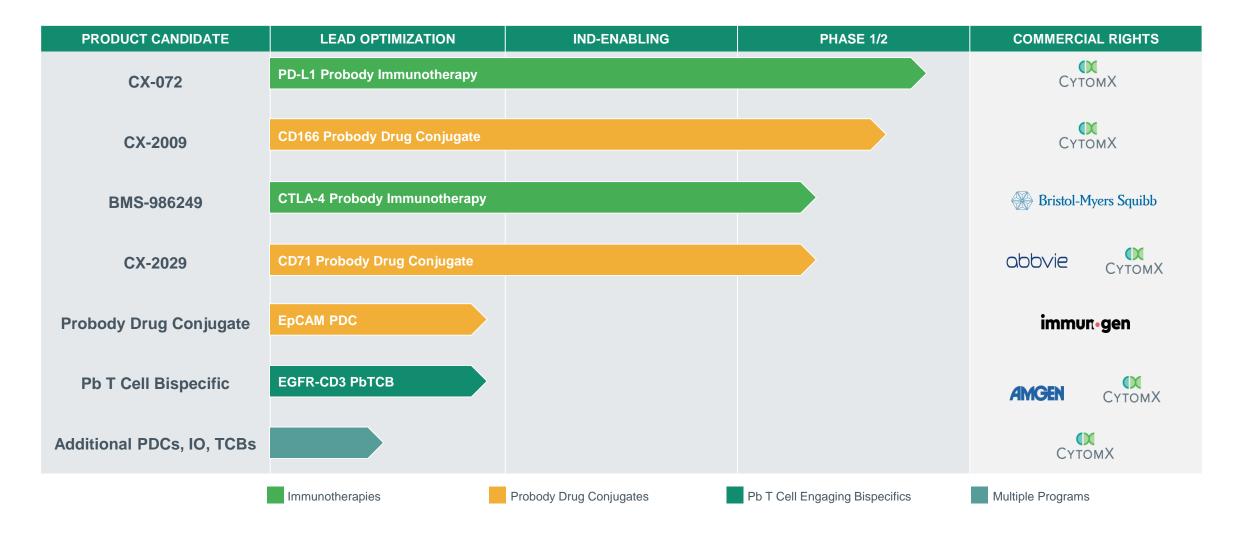
Pretreated with all other options as well including nivo - Had no other options

In Conclusion

- Lack of efficacy or emergence of toxicities are the main contributors as to why many patients don't benefit
- Successful treatment means long treatment cycle
- The common threads
 - Side effects are a major concern and limit the ability of dosing
 - Targeted Therapies: Playing a major role in the cancer treatment paradigm
 - Combinations of the two Probodies would be great

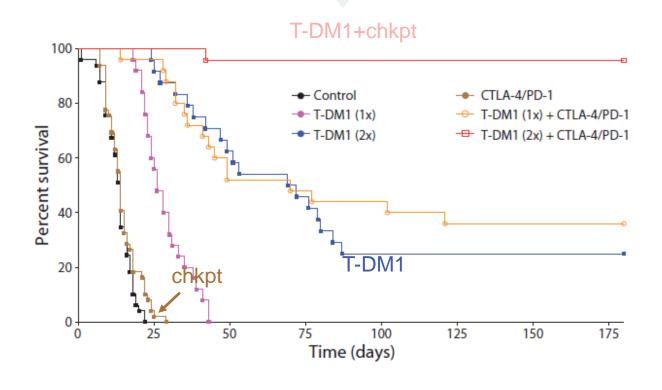
Important to Explore Innovative Approaches to Enhancing Existing Established Targets and Novel "Undruggable" Targets

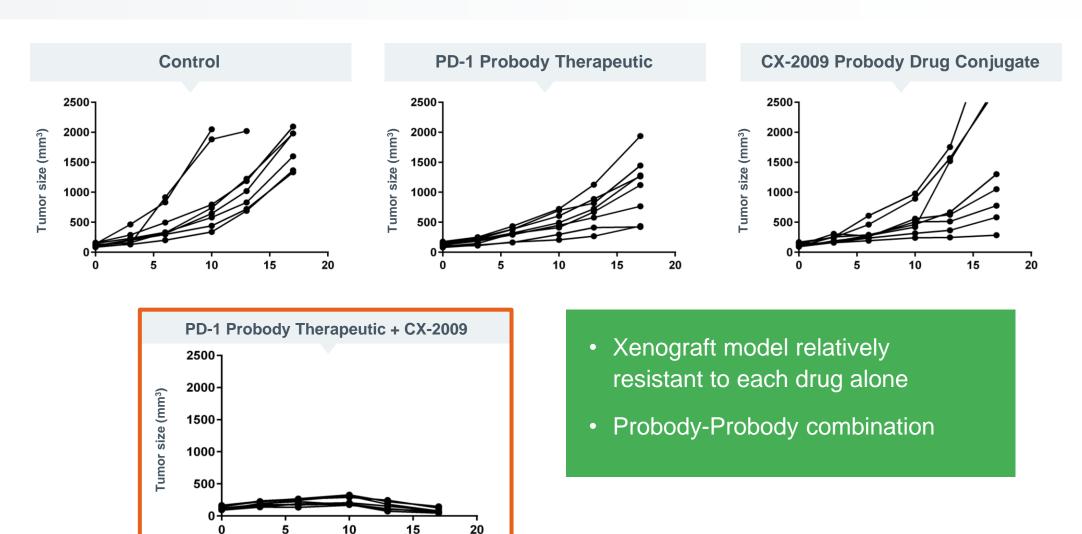
Today's Key Takeaways


We are Building a Highly Innovative, Product Focused Company

- Probody Platform Proof-of-Concept Established
- Potentially Differentiated Products Emerging
- Platform Potential for New Targeted Therapies
- Maintained Progress Across Strategic Partnerships
- Strong Financial Position
- Seasoned and Experienced Team
- Highly Focused Execution Since 2015 IPO
- Multiple Catalysts 2019/2020

Deep and Differentiated Probody Pipeline




Emerging Evidence for ADC and Checkpoint Inhibitor Synergy

T-DM1 Increases TILs CD8 pretreatment post-treatment

T-DM1 + Checkpoint Blockade is Synergistic

Combination of CX-2009 and PD-1 Probody Therapeutic Demonstrates Synergistic Activity; Suggesting Potential for CX-072 + CX-2009 Combination

Upcoming Milestones

PROCLAIM-CX-072 (PD-L1 Probody Tx)

Updates 2019:
 Monotherapy Expansion
 Data, Zelboraf®
 Combination Data,
 Ipilimumab Combination
 Next Steps

PROCLAIM-CX-2009 (CD166 PDC)

 Update 2019: Additional safety and efficacy readout from Parts A and A2, Cohort Expansions Open

BMS-986249 (CTLA-4 Probody Tx)

 BMS Anticipates Data Disclosures in 2019

Closing Remarks

Sean McCarthy, D.Phil.

President, Chief Executive Office and Chairman

Thank You

